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The improvement of heat transfer conditions in liquid-metal magnetohydrodynamic 
(MHD) flows is of prime importance for self-cooled fusion blanket design concepts. 
For many years the research was based on stationary inertialess assumptions since it 
was expected that time-dependent inertial flows would be suppressed by strong 
electromagnetic damping, especially in the extreme range of fusion relevant parameters. 
In the present analysis the stationary inertialess assumptions are abandoned. 
Nevertheless, the classical ideas usually used to obtain inertialess asymptotic solutions 
are drawn on. The basic inertial equations are reduced to a coupled two-dimensional 
problem by analytical integration along magnetic field lines. The magnetic field is 
responsible for a quasi-two-dimensional flow; the non-uniform distribution of the wall 
conductivity creates a wake-type profile, the MHD effect reducing to a particular 
forcing and friction. The solution for the two-dimensional variables, the field aligned 
component of vorticity, the stream function, and the electric potential are obtained by 
numerical methods. In a flat channel with non-uniform electrical wall conductivity, 
time-dependent solutions similar to the Karman vortex street behind bluff bodies are 
possible. The onset of the vortex motion, i.e. the critical Reynolds number depends 
strongly on the strength of the magnetic field expressed by the Hartmann number. 
Stability analyses in viscous hydrodynamic wakes often use the approximation of a 
unidirectional flow which does not take into account the spatial evolution of the wake. 
The present problem exhibits a wake-type basic flow, which does not change along the 
flow path. It represents, therefore, an excellent example to which the simple linear 
analysis on the basis of Orr-Sommerfeld-type equations applies exactly. Once 
unstable, the flow first exhibits a regular time periodic vortex pattern which is 
rearranged further downstream. One can observe an elongation, pairing, or sometimes 
more complex merging of vortices. All these effects lead to larger flow structures with 
lower frequencies. The possibility for a creation and maintenance of time-dependent 
vortex-type flow pattern in MHD flows is demonstrated. 

1. Introduction 
In the past, liquid-metal magnetohydrodynamic (MHD) flows have been considered 

and investigated intensively as possible applications in self-cooled fusion reactors (e.g. 
Malang et al. 1988). The electrically conducting coolant suffers from an interaction of 
the flow with the strong, magnetic field confining the fusion plasma. Electric currents 
are induced in the fluid, which interact with the applied magnetic field. For strong 
magnetic fields the arising electromagnetic forces (Lorentz forces) are the dominant 
contribution to the momentum balance and the flow splits into distinct regions. The 
internal region is called the core, where the electromagnetic forces mainly balance the 
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pressure gradient. Inertial forces are very weak and viscous effects are confined to thin 
boundary layers at the walls. In recent years asymptotic methods have been considered 
as powerful computational tools for calculating the stationary, laminar, inertialess 
coolant flow in many three-dimensional geometries (see e.g. Biihler 1995; Molokov & 
Biihler 1994; Moon et al. 1992). For most applications in strong magnetic fields, inertia 
forces are small compared with Lorentz forces and have been taken into account in 
only a few works. 

Heat transfer calculations based on laminar inertialess flows show that an intense 
enhancement of the convective heat removal from the plasma-facing wall would be 
desirable in order to keep the highest wall temperature below acceptable limits, to 
reduce the mean velocity, or to open the possibility for much simpler design options. 
An efficient improvement of heat transfer conditions by time-dependent turbulent 
motion may be inhibited by strong MHD damping where the kinetic energy of three- 
dimensional turbulent fluctuations is immediately removed by Joule’s dissipation. On 
the other hand, MHD effects may intensify vortices whose axes are aligned with the 
magnetic field (‘reversed energy cascade’, see e.g. Sommeria & Moreau 1982; 
Sommeria 1986). Once created, such vortices are damped only weakly and can form 
quite large two-dimensional structures in the plane perpendicular to the magnetic field. 
The possibility of generating such vortices was mentioned several years ago (e.g. 
Kolesnikov & Tsinober 1972; Kolesnikov 1972). Andreev & Kolesnikov (1993) 
propose the use of so-called turbulence promoters (non-homogeneous wall con- 
ductivity) in order to initiate or intensify desired two-dimensional vortex patterns in 
the plane perpendicular to the magnetic field. 

Although cited at other places in the present work it should be noted that the 
references listed above are not the first to deal with related phenomena in MHD flows. 
In 1956 Lehnert described an experiment in a rotationally symmetrical apparatus using 
a free-surface mercury layer above a highly conducting bottom. The bottom is split 
into several concentric rings, one of which is rotating. If the magnitude of an applied 
magnetic field is increased, the fluid in almost the whole device becomes stagnant, 
except that in a column located above the rotating part. Shear layers are formed and 
the motion, which was laminar without magnetic field becomes time-dependent, 
exhibiting vortex structures at the surface. 

Abas (1969) analysed the stability of an MHD mixing layer. On the basis of an 
Orr-Sommerfield-type equation he finds that the onset of time-dependent motion in 
terms of the critical Reynolds number Re, depends linearly on the strength of the 
applied magnetic field in terms of the Hartmann number M (for definition of these 
numbers see later in this paper). 

Internal shear layer in MHD flows created by non-uniform electrical boundary 
conditions at the channel walls have attracted the attention of a number of researchers 
in the past. Alpher et al. (1960) describes an experiment using an open channel flow 
with a bottom wall of non-uniform conductivity. In the case of a highly conducting 
disk fixed at the bottom they observed an almost stagnant fluid column above the disk 
with its axis aligned with the applied strong magnetic field (‘as though a fixed cylinder 
were immersed in the flow’). The interaction with the surrounding flow leads to a 
formation of a Karman vortex street in the wake of the disk. 

While in the experiment of Alpher et al. (1960) the electrodes act passively on the 
flow there are other active means to create or control MHD shear layers by applying 
voltage to electrodes placed at the walls. In a series of three subsequent papers Hunt 
& Williams (Part I ,  1968), Hunt & Malcolm (Part 2, 1968), and Hunt & Stewartson 
(Part 3, 1969) describe these types of flows. In the problem they consider, the electrodes 
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FIGURE 1. Geometry and coordinates. 

create discontinuities in the electrical boundary conditions. Internal shear layers spread 
from these locations into the fluid along magnetic field lines, with characteristic 
thickness on the order of M-l''. In Part 1, the authors present an exact solution for the 
case of line electrodes and point electrodes at the walls and show a comparison with 
results of an asymptotic theory. In Part 2, results are shown for circular electrodes. A 
comparison of these results with a rotationally symmetric analysis (Part 3 )  confirms the 
theory, which predicts uniform flow variables along magnetic field lines with sharp 
shear layers starting at the electrodes edges. The instabilities of these shear layers are 
discussed by Malcolm (1 970). He finds a stability limit (critical magnitude of current 
supplied to the electrodes) at which the basically steady state starts to exhibit time- 
dependent behaviour. In his paper Malcolm tries to relate the critical current to a 
critical Reynolds number. He finds for his experiment that Re, = consf for moderate 
M and Re, - MIi3 as M is large. 

In the present paper, we follow the idea of vortex generation by non-uniform 
conductivity of the channel walls with the aim of showing that an intense time- 
dependent mixing is possible or even favoured by the presence of a strong magnetic 
field. By the use of non-homogenous conductance at the walls of a flat channel (as 
suggested by Kolesnikov 1972 or earlier for the open channel flow by Alpher et al. 
1960), a basic profile of velocity is created with two internal shear layers. The stability 
of this basically laminar unidirectional flow is considered. The nonlinear flow which 
establishes after the onset of a time-dependent motion is investigated by a numerical 
analysis. 

The problem considered is the flow of an electrically conducting fluid under the 
influence of a strong, externally applied magnetic field. The flow is bounded by the 
parallel walls of a flat channel (see figure 1) similar to the problem treated by Hartmann 
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(1937) and by Chang & Lundgren (1961) for homogeneous conductance properties of 
the walls. As an extension of these fundamental works, the influence of an 
inhomogeneous conductivity of the walls is investigated. Abrupt changes of the wall 
conductivity lead to a formation of internal thin shear layers which spread from the 
point of discontinuity at the wall along magnetic field lines into the fluid. Such layers 
can carry a significant part of the total current which may lead to a complex three- 
dimensional current path causing interesting physical effects. Making theoretical 
predictions for such cases may be a difficult undertaking since all the nonlinear 
equations have to be solved by a detailed three-dimensional analysis resolving the 
internal layers. 

To avoid these difficulties the inhomogeneities considered in the present paper have 
a smooth transition between the insulating condition as 1x1 >> L to highly conducting 
conditions within the strip of width 2L. If the wall conductivity varies over distances 
large enough that internal layers do not occur (larger than the thickness of the internal 
layers), the possibility of analytically integrating the basic equations in the direction of 
the magnetic field is ensured. The integration of the basic equations in the magnetic 
field direction reduces the computational effort to the solution of a two-dimensional 
problem as in the case of the stationary inertialess core flow approximation. However, 
the time dependence associated with inertial effects in the plane perpendicular to the 
field are retained. This idea is not new and has been successfully applied (e.g. by Verron 
& Sommeria 1987) to study the MHD decay of initially given vortex patterns in 
insulating ducts. The present analysis is an extension of their ideas in order to 
investigate the time dependent inertial MHD flow in ducts with non-uniform wall 
conductivity. The main interest is focused on the question of whether there are 
possibilities for vortex generation and what will be their nonlinear interaction once 
they are created. 

2. Formulation 
The considered flow of an electrically conducting fluid is assumed to be inductionless 

and governed by the following set of equations (e.g. Sommeria & Moreau 1982) for 
conservation of 

mass v - v  = 0, (2.1) 

(2.2) momentum a, v + ( u -  V) u = - V p  +- Av + Nj x 2, 1 
Re 

charge 0 - j  = 0, 

and by Ohm's law j = -V# + v x 2. 

Here v = (u, zi, w), j = (jz,ju,jz), 4, p denote velocity, current density, electric potential 
and pressure, scaled with a characteristic velocity V, with CTVB, VLB, and p V 2 ,  
respectively. cr and p are the electric conductivity and density of the fluid, B the 
magnitude of the constant, uniform magnetic field BZ", and L is a characteristic scale 
in the transverse (the x-) direction. 

The problem is characterized by two independent parameters. The Reynolds number 
Re = VL/v represents the ratio of inertia and viscous effects where v is the kinematic 
viscosity. The interaction parameter N = gLBz/pV also known as the Stuart number 
gives the ratio of electromagnetic and inertia forces. 

The fluid is bounded by two parallel walls at z = 1 a which are perpendicular to the 
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magnetic field. The boundary conditions at the upper fluid-wall interface are the no- 
slip condition 

and the thin-wall condition (see e.g. Walker 1981) 

a = O  at z = a ,  

Currents leaving the fluid region at z = a enter the wall of non-dimensional thickness 
d. They turn in tangential direction and create in the wall a distribution of potential 
according to (2.6). The ratio of wall to fluid conductivity is rJr. V,, stands for the 
projection of the gradient vector in the (x, y)-plane. 

The same inhomogeneity of the wall conductivity is assumed to be present at the top 
and bottom wall so that the entire problem is symmetric with respect to the plane 
z = 0. Therefore, only the upper half of the channel is considered with appropriate 
symmetry conditions 

? z u = ? p v = w = O  at z = O ,  (2.7) 
j.Z,=O at z = O .  (2.8) 

u = P(z) .$  as x+?m, (2.9) 

At the lateral boundaries the flow is unidirectional and fully developed with 

according to Hartmann's solution. 
For stability investigations the flow is assumed to satisfy periodic boundary 

conditions at the inlet and outlet. For studying global nonlinear phenomena the flow 
is assumed to be fully developed at the inlet to the computational domain. At the end 
as y + CL, a kind of free outflow condition is used. This condition will be discussed 
later. 

3. Reduction to a two-dimensional problem 
The elimination of pressure from (2.2) leads to the equation 

1 
Re 

V x [a, u + ( u . V )  u] = -V x A u +  N2, j ,  (3.1) 

which clearly demonstrates the strong correlation of the variables along magnetic field 
lines for large values of N and Re. 

c',j,+O for R e >  1, N-tco .  (3.2a) 

Moreover, by taking the curl of (3.1) twice and using Ohm's law it can be shown that 

?zzu(+O for R e >  1, N+m.  (3.2b) 
Using the symmetry conditions at z = 0 the relations 

zz$c  = ?,I(, = F Z V C  = u', = 0, ( 3 . 2 ~ )  

which are valid in the whole core, can be deduced immediately for large N as a direct 
consequence of conditions (3.2 a,  b). The superscript c denotes variables in the core. 
This means that the vorticity l2 = V x u has only one component l2, = O,, z" in the core, 
aligned with the magnetic field. Please note that the symmetry condition at the plane 
z = 0 is convenient but not necessary. In the more general case one simply has to 
determine the influence of viscous friction and Joule's dissipation in both viscous 
boundary layers at the walls separately and to study their common impact to the flow 
in the core. 
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In the viscous boundary layers at the walls, called the Hartmann layers, additional 

contributions to the vorticity are necessary to satisfy the no-slip condition. With the 
abbreviation 52,. for the viscous correction to the field-aligned component of vorticity 
(in addition to the core solution a,,), after a stretching of the wall normal coordinate, 
one gets the boundary-layer equation 

NSZ,, = 0. (3.3) 

Equation (3.3) has been derived assuming that the core variables satisfy the inviscid 
part of (3.1). Further it has been assumed that the potential 4 does not vary across the 
boundary layer, i.e. the viscous correction for potential vanishes to the main order of 
approximation (see e.g. Moreau 1990, p. 128). The first term of (3.3) is obtained from 
the viscous term of (3.1) by introducing a stretched boundary-layer coordinate. The 
second term results if a,j, is expressed via the charge conservation equation (2.3) by the 
current componentsj,, j y  using Ohm’s law (2.4). The scale of the stretched wall normal 
coordinate 5 = z / S  turns out to be on the order 6 = (Re N)-lI2 for a reasonable balance 
of forces. The quantity (ReN)1’2 = Ha corresponds to the well-known Hartmann 
number. Equation (3.3) happens to be independent of the x and y coordinates. Its 
solution matches the core values 52,. exponentially with the no-slip condition. 

The behaviour of velocity components determined by ( 3 . 2 ~ )  and (3.3) justify the 
representation of the fluid velocity by 

u = - ay $(x, Y)f(Z), (3.4 a-c) 
using the two-dimensional stream function $(x,y). The separated form (3.4) with a 
function f independent of the x- and y-coordinates is indeed a strong assumption and 
not valid in general. Nevertheless, it should be valid for very strong magnetic fields as 
N % 1 or in the Hele-Shaw approximation as a < 1. The above arguments may be good 
or best for laminar flows. However, even time-dependent flows should approximately 
be described by (3.4) as long as the velocity in the magnetic field direction is negligibly 
small and a strong correlation along field lines of the velocity components 
perpendicular to the field is observed. Since this has been the case in several MHD 
experiments reported in the past by a number of authors, there is evidence that 
assumption (3.4) is valid for strong fields unless the flow becomes really three 
dimensional (see also the discussion in 5 5.3). 

Equations (3.4~-c) determine the velocity field in the core and in the Hartmann layers 
for Re % 1 and N b 1. The shape function f(z) has to satisfy the no-slip condition 
f la)  = 0 and the symmetry condition a,f(O) = 0. Owing to the normalization Jt fdz = a 
the velocity scale V introduced earlier is the z-averaged velocity as x + co. For this 
case, f corresponds to the solution of Hartmann’s problem u = f(z)y^ as x + f 00. 

With the definitions (3.4), equation (3.1) for the z-component of vorticity 
QZ = w(x, y )  f = Axy $f reads 

u = a, $0, y)f(z), w = 0, 

The Ohm’s law and the charge conservation equation have been combined to give 

an expression which has been already used to derive (3.5). 
a,j. = Ax, 4 - wL (3.6) 

For high values of N ,  (3.5) has the asymptotic limit 

tlzzf-Ha~= function(x,y) as N +  00, (3.7a) 
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from which the function J'is determined as 

f = 1 - eHa(r-a) for Ha 3 1, (3.7b) 
while for very small values of Ha the asymptotic solution corresponds to the Hele- 
Shaw approximation 

(3.74 

The Hele-Shaw approximation usually applies for flows confined between two parallel 
plates with a distance much smaller than the transverse characteristic dimension, if 
a 3 1. In the present paper, the applications of the theory, however, focus on high 
Hartmann numbers so that the hydrodynamic limit is not considered further. 

Both equations (3.5) and (3.6) are integrated in the z-direction. The analytical 
integration along field lines has been used by many authors, e.g. Lavrent'ev et al. (1990) 
to determine inertialess MHD flows. The integration is performed taking into account 
the thin-wall condition (2.6) and t?J= -Ha  at z = a for strong magnetic fields 
(Ha >> 1) and the symmetry conditions at z = 0. Neglecting higher-order terms 
O( 1/Ha)  one ends up with the two-dimensional equations 

determining the stream function, the electric potential and the vorticity, with the lateral 
boundary conditions 

c?,31.=(1+c)(?,q5= I ,  w = o  as x + j a 3 .  (3.11) 

The wall conductance ratio c = cr,d/cra characterizes the integral importance of the 
wall to fluid conductivity. The resulting flow in the core is two-dimensional with the 
MHD effects of the three-dimensional problem expressed in a special friction and 
forcing term. 

The left-hand side of (3.10) describes the time-dependent convective transport of 
vorticity. The right-hand side contains two dissipation terms, one describing viscous 
losses due to transverse gradients of vorticity and the other one accounting for Joule's 
dissipation in the Hartmann layer and in the thin wall. The latter one may become 
dominant at high Reynolds number. 7 is a characteristic timescale for the decay of 
vorticity due to Joule's dissipation. Using the rescaled Hartmann number M = aHa, 
it IS defined as 

7 = (-+-I N cN 
M l + c  

(3.12) 

and exhibits the asymptotic limits 

M / N  = a(Re/N)''2 c Q M-l ,  
7-*  (cN)-' for M - ' Q  c Q 1, (3.13) { N-' c > >  1,  

which clearly demonstrate that vortices in highly conducting channels (c % 1) are 
damped very rapidly. For moderate values of the wall conductance ratio, the life time 
of a vortex can become much larger, so that it may exist over a certain period even if 
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the interaction parameter is large. The weakest damping occurs in almost insulating 
ducts when c 6 M-’. For such conditions the decay time becomes very large if the 
Reynolds number or the aspect ratio n are large. For insulating duct walls with c = 0 
the decay time T is determined only by the breaking due to the Hartmann layers (see 
e.g. Moreau 1990). The general concept of the two-dimensional disturbances’ decay 
being determined by the Hartmann layer on a scale proportional to Re/M was pointed 
out already by Shercliff (1965) and others. 

For c = const, (3.10) becomes independent of the potential equation and can be 
solved without knowing the potential distribution. For this case the vorticity equation 
is comparable to the equation used by Verron & Sommeria (1987) for the case c = 0. 

The last term of (3.10) is a source term of vorticity and describes the vorticity 
generation at positions where the wall conductance ratio varies. This is exactly the case 
near both sides of the conducting strip. In contrast to previous works which considered 
only the MHD vortex decay, (3.10) accounts for vorticity production in addition. 

Both last terms in (3.10) have been brought into the equation by the boundary 
conditions of the original three-dimensional problem and give rise to shear layers 
aligned with the magnetic field. It should be mentioned that in the paper by Verron & 
Sommeria (1987), there is a source term, proportional to the current density j ,  at the 
wall. By using the thin wall condition and Ohm’s law we can express the transverse 
current in their analysis and completely recover (3.8)-(3.10). 

4. Linear stability analysis 
If the wall conductance ratio is a function of the transverse coordinate only, c = c(x) 

equations (3.8)-(3.11) are satisfied by a basic unidirectional flow $o(x), cb0(x), wo(x) .  
The general time-dependent solution is expanded in normal modes as $(x,y, t )  = 
k0(x) + $l(x) eik(y-st) for stream function and in an analogous way for potential and 
vorticity. The wavenumber k and the phase velocity s in general have complex values. 
If one is interested in the temporal growth of spatially periodic flows, k is usually 
assumed to be real, while s = s, + is, is complex. The imaginary part si determines 
whether a solution is amplified or damped in time, if s, > 0 or s, < 0, respectively. The 
real part s, of the phase velocity gives the travelling speed in the y-direction of a flow 
pattern. Time periodic solutions are characterized by a real valued frequency sk and by 
a complex wavenumber k = k, + ik, of which the imaginary part determines the spatial 
growth rate. Temporal and spatial analyses lead to the same stability limits of the basic 
flow since their results coincide at the neutral limit of stability s, = ki = 0. The results 
for the neutral modes obtained by the temporal analysis outlined in this section apply, 
therefore, as well for the neutral spatial modes. If one is interested whether an unstable 
solution is convectively unstable, or absolutely unstable in the sense of the terminology 
used in several works (see e.g. Huerre & Monkewitz 1985; Monkewitz 1988; 
Hannemann & Oertel 1989) a pure temporal analysis would not be sufficient. The flow 
is called convectively unstable if an amplified perturbation moves downstream with the 
flow, while it is absolutely unstable if disturbances grow in time at the place where they 
were initiated. 

With the abbreviation D = a, the equations (3.8)-(3.10) read: 

(D2 - k2) $1 = wl, 

(DcD + [ 1 + c] (D2 - k2)) #1 = wl, 
(4.1) 
( 4 4  
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with boundary conditions @1 = Q1 = w1 = 0 as x + & a, assuming that the corrections 
to the basic flow are small. For pure hydrodynamic flow, N+O,  (4.3) would find its 
limit in the classical Orr-Sommerfeld equation. Equations (4.l t(4.3) constitute an 
eigenvalue problem for the complex phase velocity s. The same equations with k = 0 
first serve for the determination of the basic flow if $, = = w ,  are replaced by 
y2, = Q,, = w,, and boundary conditions (3.1 1) are applied. 

The set of equations (4.1)-(4.3) is solved numerically by an iterative method for fixed 
values of the physical parameters Re, Nand given wavenumber k and wall conductance 
ratio c(x). First, a mapping x(u) = x,,, sinhpulsinhp in the x-direction is introduced. 
The geometric parameter p ensures a high resolution in the region near the conducting 
strip while near the sides, where the values and derivatives of k1 = $1 = w1 vanish, a 
lower resolution will have less influence on the accuracy. The computational domain 
ends laterally at x = k x m a z ,  a value which is chosen large enough that the boundary 
conditions, which are valid as x + & a, hold with sufficient accuracy. After the 
mapping, all derivatives are expressed by finite differences. 

Starting from an initial guess (subscript n )  an improved solution (subscript n + 1) is 
calculated by 

from which sn+l -so is evaluated as 
W' = (P+l  -so) W: = F(k, y20, wn ; $:, Qy, w:) - S, w:, (4.4) 

The integration is performed between the lateral boundaries of the computational 
domain. Once s'lfl is known w' is normalized to give my+'. The function F corresponds 
to (4.3) transformed to swl = F. The value so has been introduced in order to avoid 
numerical instabilities during the iteration process. Equations (4.1) and (4.2) are used 
to determine I+!?;" and $:+I. The iteration is performed until the changes in the 
eigenvalue are sufficiently small, e.g. 

Equation (4.3) may be satisfied by a number of eigenvalues s with corresponding 
eigenfunctions wl. For stability considerations the eigenvalue s with highest 
value of s, is required. This can be achieved with a proper choice of so. The fact that 
the obtained eigenvalue is the relevant one for the onset of instability is confirmed later 
by a two-dimensional nonlinear numerical analysis. 

For the following discussion of results a reference case is defined with M =  lo3, 
a = 10. The wall conductance ratio varies according to c(x) = en/[ 1 + (sinh x/sinhx,)"], 
with c,, = lo-', x,, = 1, m = 6. The variation is shown in figure 2(a) .  As a result of the 
higher wall conductance ratio near x = 0 the velocity u ~ ,  = 2z$,, of the basic flow is 
reduced (see figure 2b). The reduction of velocity can be approximately described by 
the formula according to Chang & Lundgren (1961), neglecting higher-order terms 
O ( 1 l W .  

c+  1 
0, = ___ Mc+ 1' 

As a consequence two layers occur at the right- and at the left-hand side of the 
conducting strip with two peaks of vorticity. This basic flow is independent of the 
Reynolds number Re if M ,  c and a remain unchanged. The Reynolds number therefore, 
represents a physical parameter which can be used to investigate the stability of the 
same basic flow. Alternatively, instead of Re the parameter N could be used. 

The limits of stability are characterized by the neutral curves defined as si(k, 
Re, M ,  . . .) = 0, which for a given set of physical parameters separate the region of 
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FIGURE 2. Fully developed flow and eigensolution at the limit of stability. M = lo3, Re, = 182, k,  = 
0.783, A, = 8.02. (a) Distribution of wall conductance ratio, (b) basic solution for -, the 
unidirectional velocity u,, and ---, vorticity w,,, (c) -, real and ---, imaginary part of the 
eigensolution w l ,  ( d )  isolines of wt exp (ik,y), (e)  isolines of superposition of w,, + 0.2 w1 exp (ik,y). 
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FIGURE 3 .  Curves of neutral stability. Stable regions are at the left-hand side, unstable regions are 
at the right-hand side of the curves. 
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below this line satisfy the model assumption. 

wavenumbers for which small perturbations are damped from those creating amplified 
solutions. Results are summarized in figure 3. In addition to the reference case 
M = lo", neutral stability curves for other values M = lo", 2 d CY d 4.5 are shown. 

The flow is stable for a given set of parameters if the combination of (k,  Re) is at  the 
left-hand side of the neutral curves while it is unstable if ( k ,  Re) lies at the right-hand 
side of the curves. For a given M the flow is stable against perturbations with any 
wavenumber 0 < k < cx: if Re is smaller than a critical value Re, given by the vertical 
tangent to the neutral curve. If the Reynolds number is slightly higher, the instability 
will be initiated with the critical wavenumber kc.  The dashed curve indicated 
in figure 3 represents the critical values for (Re,,k,,) which are a function of the 
parameter M .  

The values of Re, as a function of M are plotted in figure 4 together with the wave 
number k,  and the real part of the phase velocity . s , , ~ .  It turns out that Re, becomes 
proportional to M for large values of M .  This fact is to be expected if (4.3) is 
considered. For high Re, the eigenvalue problem becomes directly independent of Re. 
The most important parameter governing the stability problem becomes 7. The limit 
of stability depends therefore only on a characteristic value 7,. A fixed value of T,, 

which is approximately proportional to R e / M  since almost the whole computational 
domain is insulating, will lead to the result above. It is remarkable that the ratio R e / M  
has been found to be a characteristic property for the onset of turbulent motion in 
several MHD experiments since the early 1940s. A short summary of these results is 
given by Moreau (1980), more details can be found in the review presented by Lielausis 
(1975). The fact that the loss of laminar stability in these experiments happens to occur 
for Re > Re, - M ,  as in the present theory, supports the idea that the first transition 
leads to quasi-two-dimension time-dependent motion once a critical value for a two- 
dimensional stability criteria is exceeded. Indeed, Kolesnikov & Tsinober (1974, cited 
e.g. by Moreau 1990, p. 289) could clearly prove that the turbulent motion exhibits 
strong two-dimensional features. 

For smaller values of M the critical value Re, deviates from this dependency and 
reaches a minimum near M = 10'. The reason for the stabilizing effect for M < lo2 is 
the following: The driving mechanism for instabilities is the velocity deficit across the 
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shear layers. From (4.6) it is obvious, that for M < c-l this deficit and thus the 
destabilization becomes continuously weaker. The figure contains also the line 
Re(N = 1, M )  which should remind the reader about the limits of application of the 
present model since it has been assumed that N >> 1 (say one order of magnitude). If 
this condition is not satisfied the analysis should be really three-dimensional, but it is 
expected that the present quasi-two-dimensional results still hold qualitatively. The 
value of k, increases and that of sr, decreases continuously with increasing M in the 
range of parameters considered. For small values of M ,  the characteristic transport 
velocity is sr, = 1, while for large M ,  sr, approaches a value slightly higher than 0.5. 
Both values correspond approximately to the velocity at the position with highest 
magnitude of vorticity, a position at which the instability is initiated. 

The eigensolution for w1 for the reference case at the limit of stability Re, = 182, 
k, = 0.783 is shown in figure 2(c) as a function of x. A better insight into the physics is 
provided by figure 2(d )  where isolines of w1 exp (ik,y) are plotted in the (x, y)-plane for 
one wavelength A, = 2n/k,. In a superposition of the eigensolution with the basic flow, 
shown in figure 2(d ) ,  the wavy type of the full solution can be seen. 

The following chapter is concerned with the nonlinear solution of the model 
equations (3.8)-(3.10) with boundary conditions (3.11). Results are compared with 
those obtained by the linear theory in order to validate both independent methods. 

5. Nonlinear numerical analysis 
Further investigations are focused on the nonlinear, time-dependent development of 

the flow. Since the numerical procedure is more or less standard, only some basic ideas 
are presented before the discussion of results. For convenience the same mapping in the 
transverse direction has been used as for the stability analysis to ensure a high 
numerical resolution near the shear layers. The vorticity equation (3.10) is used in the 
form 

w 1 N 
7 Re l + c  

a, w + -  = J ( ~ ,  11.1 +-A,, O - - - V ~ ~  C. v,, 4, 

where J(w, @) = a, 11. a, w - a, @ aY w .  The Jacobian J(w, @) is approximated by the 
scheme proposed by Arakawa (1966). This scheme which conserves the mean square 
of kinetic energy and the mean square vorticity is a robust tool for the approximation 
of the nonlinear terms even at high Reynolds numbers. 

The right-hand side of (5. l), for simplicity abbreviated to R(t), is approximated by 
finite differences and linearized in time in the form of a linear extrapolation from two 
previous timesteps t ,  and t,-l = t ,  - At. The equation (5.1) is integrated analytically in 
time between t ,  and t,+, = t,+At with the linearized right-hand side R(t) = 

R(t,) + [R(t,) - R(t,-,)]t/At to give w(t,+J. The time integration proposed converges 
to the Adams-Bashforth scheme as At/r  + 0. Once ~(t , , , )  is known @(t,+l) and q5(t,+l) 
are calculated according to (3.8) and (3.9) using a fast Poisson solver. 

Tests of convergence of the numerical scheme for the reference case with M = lo3, 
a = 10, and Re = 500 showed that between the grids (n, x n,) = (40 x lo), (60 x 20), 
(80 x 30), and (100 x 40) the relative changes of a typical signal (Ex) (see equation (5.3) 
below) decreases from 3.3 %, 0.72% to 0.019%. This indicates that even n,  = 60 grid 
points in the x-direction and nu = 20 grid points in the y-direction over one wavelength 
are enough to describe the flow with sufficient accuracy. Nevertheless, most calculations 
have been performed with n,  >, 100 and more than 20 points per wavelength in the y- 
direction. 
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FIGURE 5. Nonlinear periodic solution with wavelength A, = 8.02 for several values of Re. The data 
points in the diagram for the averaged kinetic energy (E,) correspond to the solutions for vorticity 
o and streamfunction yk as shown above. Re, has been evaluated by the linear theory to Re, = 182.07. 

5.1. Periodic solutions in space 
The first nonlinear numerical calculations have been performed with periodic boundary 
conditions between the inlet and outlet of the computational domain in order to have 
a possibility for a direct comparison between nonlinear results and the results obtained 
by the linear theory. To characterize the local magnitude or intensity of an unstable 
time-dependent flow, the kinetic energy in the transverse direction E, at a cross-section 
y is used. 

For flows with periodic boundary conditions at the inlet and outlet an averaged value 

gives a space independent measure for the intensity of a vortex pattern which travels 
through the computational domain. After the flow has reached its nonlinear saturation 
( E x )  becomes independent of time. 

The first nonlinear calculations are performed to get data for a comparison with the 
linear stability analysis in order to confirm the physical relevance of the obtained 
eigenvalues and to validate the nonlinear numerical scheme. Calculations are started 
with the reference case as used for presentation of results of the linear stability analysis 
( M  = lo3 and a = lo). The length of the computational domain for the nonlinear 
analysis has been fixed to the critical wavelength A, = 27c/k, = 8.02 obtained from the 
linear stability analysis. Results are shown in figure 5 for stream function $ and for 
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FIGURE 6. Comparisons of results obtained by -, the numerical nonlinear code by ---, the linear 
stability analysis for the reference case M = lo3, a = 10 with k = k, = 0.783. (a) Time history of 
damped or amplified nonlinear solutions for the same initial condition for several values of Re. (b) 
si as a function of Re. 

vorticity OJ in form of instantaneous isolines for fully established conditions at 
Reynolds number 200 d Re d 700. The flow at Re = 200 is already unstable and shows 
a wavy solution for $ and w which travels through the computational domain in the 
main flow direction. As Re increases nonlinear effects become more important and a 
formation of regions with local maxima of vorticity becomes visible. With decreasing 
Re the averaged transverse kinetic energy decreases continuously, indicating that at 
Re = Recr based on the linear stability analysis, any transverse motion will stop. 

To fix the critical Reynolds number with higher accuracy by the nonlinear numerical 
method, the time history of (E,(t)) of transient solutions is considered. The nonlinear 
analysis is started with initial conditions (subscript i) 

(w,  II., $A = (0, $, $1" + 40, II.>$)l ei"(Y-st) 

Here, 6 is a small, initial perturbation amplitude. The transverse kinetic energy is 
amplified or damped according to the linear analysis as 

(E,(O) = (E,,J exp(2ks,t), (5.4) 

where (E,, ,) is the mean transverse kinetic energy of the initial condition. The left- 
hand side is evaluated using the two-dimensional numerical calculations and compared 
with the right-hand side obtained by the linear theory. Figure 6(a) shows results for 
(E,) which have been obtained by the linear theory (dashed lines) and by the nonlinear 
numerical code (solid lines) for several values of Re near the critical value Re,. 
Solutions for Re < Re, are damped, those for Re > Re, are amplified. 

The slopes in the diagram with the linear-logarithmic axis determines the imaginary 
part si of the phase velocity 

The values of si obtained with the nonlinear numerical method are compared with 
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FIGURE 7 .  Comparison of results obtained by -, the numerical nonlinear code and by ---, the 
linear stability analysis for the reference case M = lo3, a = 10 with Re = 500. (a) Time history of 
damped or amplified nonlinear solutions for the same initial condition for several values of k .  (b) si 
as a function of k .  

those obtained by the linear theory in figure 6(b). The values of the critical Reynolds 
number, for which sf(Re,) = 0, are found to be in very good agreement for both 
methods . 

Similar agreement is found for the reference case M = lo3, a = 10, if the Reynolds 
number is fixed to the value Re = 500 in order to analyse the range of stable or unstable 
wavenumbers. Figure 7 shows the time history of damped or amplified signals obtained 
by the linear theory and by the nonlinear numerical code. The slopes in figure 7 ( a )  
which determine the amplification rate of a perturbed solution are summarized in 
figure 7(b). The agreement of results obtained by the nonlinear theory and by the linear 
stability analysis is good. For larger times ( t  > 125), faster growing eigenmodes 
become more important than the investigated basic mode. The reason is that these 
modes which also lie in the unstable region of the stability diagram (figure 3 )  are not 
excluded by the nonlinear analysis and, once initiated, grow faster than the investigated 
basic mode with smaller wavenumber. 

5.2. Defined injlow, free outjlow 
More relevant for experimental or engineering applications are conditions of defined 
inflow and free outflow. As inflow conditions at y = 0, the solution kO, q+,, wo of 
equations (3.8)-(3.10) is given, assuming a fully established flow, i.e. c?y = 0. At the 
outflow boundary the conditions 

are introduced for stream function $ and for potential 4. These conditions describe the 
undisturbed convective transport of the exit flow pattern in the main flow (the y-)  
direction. Equation (3.10) for the vorticity w can be directly evaluated at the outflow 
boundary, neglecting viscous terms on the order Re-' in the axial direction. This 
assumption may cause a boundary layer at the exit. However, its influence on the flow 
within the computational domain should be negligibly small for high values of Re. 
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FIGURE 8. Instantaneous isolines of vorticity w(x ,y )  and spectra of u(x = 0,y)  at the axial 
positions y = 50, 75,  100, 125 for the reference case M = lo3, a = 10 with Re = 300. 

Figures 8-10 show instantaneous plots of the vorticity field for the reference case 
with M = lo3, a = 10, for three supercritical Reynolds numbers Re = 300, 500, 700. 
Note that for all considered cases the basic stationary, unidirectional solution 
supposed as inflow boundary condition, is the same. It does not change with Re for a 
fixed value of M .  The figures show isolines of the vorticity w on the (x,y)-plane. The 
results have been obtained using a numerical resolution of n, = 100, ny = 400. The 
discussion focuses on the common features the influence of the Reynolds number. 

The flow enters the computational domain with a fully established profile. The two 
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FIGURE 9. Instantaneous isolines of vorticity o(x,y) and spectra of u(x = 0,y)  at the axial 
positions y = 50, 75, 100, 125 for the reference case M = lo3, a = 10 with Re = 500. 

shear layers at both sides of the conducting strip are parallel and aligned with the main 
flow direction. They have a maximum and a minimum of w as already shown in figure 
2(b). As the fluid moves downstream this basic flow becomes unstable. The first visible 
instability occurs several characteristic lengthscales downstream. The position y* 
where it is observed the first time depends strongly on the Reynolds number; with 
increasing values of Re, y* decreases monotonically in the considered range of 
parameters. 
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FIGURE 10. Instantaneous isolines of vorticity w(x ,y )  and spectra of u(x = 0,y)  at the axial 
positions y = 25, 50, 75, 100, 125 for the reference case M = lo3, a = 10 with Re = 700. 

Some test calculations performed support the idea that the flow is convectively 
unstable, i.e. an initial perturbation is adverted and grows on its path downstream, 
while at the position fixed in space, where the perturbation has been initiated the flow 
remains asymptotically stable. The question arises why nevertheless one can observe 
instabilities within a finite domain. Using the linear theory for an estimation of the 
spatial growth rate of the most amplified unstable mode, one can estimate the 
magnitude of a disturbance near the entrance for which it is necessary that the instability 
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be amplified to a visible magnitude, say 0(1Op1) at the position y* .  The spatial growth 
rate ki is estimated from the temporal one ( p  = k,s )  using the transformation proposed 
by Gaster (1 965) 

The value of k ,  is varied in order to find the maximum spatial growth rate ki, 111 at kr, l l l .  
It turns out that initial disturbances on the order of numerical errors (lo-') are 
amplified to an order 0(10-') after distances of J** = 74.3, 42.2, 34.8 ( k i , ,  = -0.155, 
-0.273, -0.330) for Re = 300. 500, 700, respectively. A comparison of these values 
with y* taken from figures 8-10 provides a means of explaining the different locations 
for first visible instabilities at different Reynolds numbers. Moreover, the frequency.fb 
and wavelength A, of the first occurring time-dependent structure can be estimated by 
the linear theory since the first visible instability should correspond to the mode of 
largest spatial amplification. The frequency,f, = / IT /2x and the wavelength A, = 2x/k, 
for k,. = k,, can be estimated to ,f; = 0.082, 0.086, 0.088 and A,, = 6.9, 6.4, 6.2, for 
Re = 300, 500. 700, respectively. The data obtained from the nonlinear numerical 
analysis suggests values of,fb = 0.067, 0.084, 0.088 and A, = 7.7, 6.6, 6.1, values which 
are close to the linear predictions. The comparison between results obtained by linear 
analysis and by nonlinear numerical calculations show the same tendency and 
qualitative agreement. The difference between linear predictions and nonlinear analysis 
is surprisingly small considering the fact that it has been mentioned by Betchov & 
Criminale (1966) that Caster's transformation, equation (5 .7 )  may be inaccurate for 
applications to wake-type profiles. 

All these considerations explain the observations (figures 8-10) of the first location of 
the instability. It is created by very small perturbations due to numerical errors in the 
fully established profile which has been calculated (as for the linear analysis) and then 
used as a Dirichlet inflow condition for the nonlinear numerics. The first instability has 
a frequency and a wavelength close to predictions by the linear analysis for the spatially 
most amplified mode. Different spatial growth rates for different Reynolds numbers 
explain the different axial positions where the instability is observed first. The fact that 
small disturbances near the entrance are the source for the instability does not restrict 
the results to pure academic considerations, since in any experiment or in engineering 
applications a perfect inflow will never by realized. 

The first appearing instabilities exhibit regular, almost time-periodic vortex patterns 
comparable to the Karman vortex street behind bluff bodies. One can consider the 
Strouhal number 

h 
St = ,j-, 

A C  

where the non-dimensional frequency f is rescaled with the distance h between the 
vorticity extrema and the velocity deficit Au = 1 - r  (,u = 0) of the inflow profile. One 
finds the values St = 0.15, 0.19, 0.20, for Re = 300, 500, 700, respectively. It is 
surprising, that these Strouhal numbers are close to those observed for Kirman vortex 
streets behind circular cylinders in pure hydrodynamic flows, where values between 
0.13 and 0.22 are observed, depending on the Reynolds number (see e.g. Lienhard 
1966; Cantwell & Coles 1983) although the mechanism of instability is quite different. 
In the present problem the shear layers become unstable, while Kirman vortex streets 
are created by a complex interaction of the viscous boundary layers at the cylinder with 
the near wake. 
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The main results of the time-dependent reorganization of the flow are summarized 
in the following sections. 

For the smallest Reynolds number considered, Re = 300, the characteristic frequency 
along the axis remains almost constant within the computational domain. It becomes 
only slightly smaller than the frequencyf, as shown by the spectra of u(x = 0, y = 50, 
75, 100, 125). The vortices are stretched in the axial direction, increasing the 
wavelength. An exchange of stability or a formation of a secondary street cannot be 
observed within the finite computational domain for these parameters. 

For the Reynolds number Re = 500, the situation is more complex. On its path 
through the computational domain the flow undergoes significant transitions with 
reorganization to locally regular patterns. The primary vortex street (vortex pattern 
when the instability reaches visible magnitude) which occurs at y > y* first increase in 
transverse extension, while at the same time the intensity of vorticity decreases. The 
primary street decays further downstream, roughly as y > 75. Already at y = 75 the 
characteristic frequency of the primary street f, = 0.084 no longer plays a dominant 
role. In the transition region the vortices are stretched in the axial direction. There is 
a strong interaction between adjacent vortices. Preferential pairing of vortices is 
observed. The pairing occurs not as in single shear layers, where two vortices of the 
same size turn around each other to form a larger one. The mechanism here is different. 
After the axial elongation it seems that stronger vortices survive. There appears to be 
a suction which transfers vorticity from smaller to adjacent larger vortices. A simple 
explanation may be that the advection velocity of larger structures is higher than that 
of smaller ones (one indication supporting this argument is the fact that the phase 
velocity calculated by the linear theory shows higher values for smaller wavenumbers). 
However, not all vortices find a suitable partner so that some ‘singles’ survive. 

The transition to new structures agrees widely with observations in the far wake of 
a circular cylinder where a rapid decay of the initial vortex mode and a formation of 
a secondary street is also observed. It is reported by several authors that pairing is the 
leading mechanism for the reorganization (see e.g. Okude & Matsui 1990). Cimbala, 
Nagib & Roshko 1988 critize the pairing theory; they write that ‘with a pairing 
mechanism the frequency of the secondary street ought to be half that of the primary 
street’. Since that was not the case in several investigations they conclude that pairing 
might not be the driving mechanism for the formation of new structures. However, a 
period doubling would occur only if the advection velocity of the new structure 
remained unchanged and if the wavelength doubled exactly. This is not the case in our 
problem and should also not be the case in a developing hydrodynamic wake behind 
bluff bodies. The occurrence of singles is another explanation for a non-integer 
frequency ratio between the primary and secondary vortex street, even if the main 
transition mechanism is pairing. 

Although in the present calculations often a pairing of vortices is observed, there are 
arguments supporting other reorganization mechanisms. Taneda (1959) and, more 
recently, Cimbala, Nagib & Roshko (1988) and Karasudany & Funakoshi (1994) favour 
the idea that the secondary vortex street is a result of a new instability of the mean wake 
after the primary street has decayed to an almost parallel shear flow. The strongest 
indication for this theory is the fact that in the transition regions neither the frequency 
of the primary street nor that of the secondary street is found to be dominant. The 
secondary street therefore exhibits completely new lengthscales and frequencies. The 
role that the primary street plays is more or less passive. It provides an unstable new 
mean wake as an initial condition for the secondary street. All these arguments are not 
in contradiction to our observation of preferential vortex pairing. When the primary 
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FIGURE 11. Time averaged flow for the reference case M = lo3, u = 10, for Re = 300, 500, 700. 
Velocity profiles of the mean wake at the axial positions ~--,  J = 25; ---, 50; . . ., 75; ---, 100; 
_ _ _  , 125 and isolines of mean vorticity. 

street decays, the single vortices are elongated and stretched in the axial direction. The 
shear layers become almost parallel before the pairing takes place. Owing to the axial 
stretching, the flow finds the possibility of taking new lengthscales, which are more 
appropriate for the new solution. 

From the present results, it does not seem possible to explain the transition to new 
structures by one or the other theory for the decay of hydrodynamic wakes described 
in the previous sections. All observed effects can be explained by both hypotheses 
which do not seem to exclude each other according to the present results. 

Another common feature with the hydrodynamic secondary street observed in the 
far wake of circular cylinders is the fact that it is composed not only by a single 
prominent frequency. Similar to the experimental observations of Cimbala et ul. (1988) 
the secondary street exhibits three outstanding peaks in the spectral amplitude. The 
occurrence of several frequencies can be explained by observations where an 
intermittent formation of regular patterns of main scale and frequency are created, 
which travel as vortex packages along the axis, producing other frequency bands 
corresponding to the number of vortices per package. 

Similar results as described above for Re = 500 can be observed for the higher 
Reynolds number, Re = 700. The only difference is that the time-dependent solution 
is more intense. The spectra show, similar to the previous one, three prominent 
frequencies except in the transition zone. In this example, the primary street already 
exhibits three outstanding frequencies. This indicates that even the primary street is 
composed of several modes before its decay is observed. The decay of the primary 
street leads to a region of almost parallel shear flow before the secondary street 
develops. 

Besides these time-dependent considerations the time-averaged solution may give an 
additional insight into the physics of the developing wake. Isolines of the time- 
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FIGURE 12. Instantaneous isolines of vorticity w(x ,y )  for M = lo*, a = 10 with Re = 5000. 

averaged vorticity are shown in the lower part, and axial velocity profiles of the mean 
wake at the positions y = 25,50,75, 100 and 125 in the upper part of the figure 11. The 
flow at Re = 300 exhibits the first instability near y = 70. The width of the vortex street 
increases first. For larger values of y there is a slight contraction of the mean wake 
before an almost parallel mean flow establishes. For Re = 500 the first transition with 
a lateral expansion occurs for y larger than about 40. The mean wake expands laterally 
and forms a parallel wake near y = 70. It seems as if the solution finds a nonlinear 
saturation before the secondary transition with larger transverse growth occurs for 
y > 80. Similar behaviour can be seen for Re = 700. The first transition here is near 
y = 30, the second neary = 80. The total width of the mean wake increases continuously 
with the Reynolds number. 

Many phenomena as described for the reference case M = lo3, a = 10, can also be 
observed for higher values of M once the Reynolds number exceeds the critical value 
Re,. For the case M = lo4, a = 10, the basic flow becomes unstable for Re > 1856 and 
exhibits more or less time periodic behaviour. One case is shown in figure 12. The 
frequencies are higher and the wavelengths shorter than for M = lo3. In the reference 
case there was a strong interaction between the vortices created at both sides of the 
conducting strip. At the centre x = 0 a significant transverse component of velocity u 
could be observed. For the higher value M =  lo4, however, a strong interaction 
between both vortex strips does not occur. Between the conducting electrodes the 
vortices are strongly damped so that both unstable shear layers seem to decouple. The 
vortices cannot extend over larger transverse scales. They are restricted to relatively 
narrow regions at both initial shear layers. Although time-dependent vortex-type flow 
patterns are observed the transverse velocity components are only weak. In order to 
achieve high transverse time-dependent velocities the damping by the electrode should 
be kept moderate. Such velocities are desirable for fusion applications if the 
improvement of the transverse exchange of the heat by a vortex-type motion is 
envisaged. A value of c, = 10/M = lop3 seems more effective for the production of 
larger vortices than the actual one of c,, = If c, = 10/M is chosen the electrode 
still conducts much better than the Hartmann layers. This provides the wake-type 
profile with a sufficiently reduced velocity at the centre, while at the same time the 
damping remains moderate. 

5.3. Some comments on early and recent experiments 
Experiments reported by Kolesnikov (1972) for the case of two highly conducting 
electrodes placed in the middle of the Hartmann walls in a channel of rectangular 
cross-section clearly support the assumptions used in the present theory of a quasi-two- 
dimensional flow in the core. The experiments show that the assumption N % 1 made 
for the present model is not critical. Even for the relatively small interaction parameter 
of N = 1.3 used in his experiment the electric field component in the z-direction had 
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been constant along z (here the orientation of coordinates are according to the present 
notation which differs from his original work). From this result he directly concludes 
that the vorticity in the core does not change along magnetic field lines. Another 
argument for a quasi-two-dimensional flow is the fact that the intensity ratio of 
fluctuations of electrical signals measured in the magnetic field direction to those 
measured in the plane perpendicular to the field is on the order of lop2, and thus very 
small. Therefore, there is evidence that the present theory applies even for problems in 
the range of N = O(1). 

In another experiment, Koilesnikov & Tsinober (1 972) used non-homogeneous wall 
conductivities in the form of a pair of conducting circular disks instead of line 
electrodes. This experiment is indeed quite similar to that described already by Alpher 
et al. (1960), who used an open channel flow with only one conducting disc at the 
bottom. An attempt to analyses these types of flow with the present model did not 
show any time-dependent motion if only one pair of conducting disks was used. For 
high values of N the fluid between the circular electrodes is almost at rest. The electro- 
magnetic forces push the fluid around a column of practically stagnant liquid. Behind 
the electrodes the fluid was immediately forced to the unidirectional main flow by the 
strong Lorentz forces. An extended wake behind the electrodes could not be observed, 
since the inertia forces are weak compared to the Lorentz forces for N >> 1. In the range 
of lower values of N inertia becomes more important. However, the result is not a 
developing wake behind the electrodes because the flow does not feel the electrodes at 
all. The flow passes between the electrodes almost on a straight path. In any considered 
case no time-dependent motion was observed in the numerical calculations. 

The fact that the small fluctuations in the experiment, reported by Kolesnikov & 
Tsinober (1972) could not be reproduced may be explained by their use of a sharply 
varying conductivity at the edge of the electrode. There is reason to believe that a 
sharply changing conductivity of the walls may be responsible for a separate 
mechanism of instability which is connected to a three-dimensional nature of shear 
layers (S. Molokov, personal conmunication). Abruptly changing conductivities of the 
walls, which would create stronger velocity gradients, are excluded by the assumptions 
of the present model. Instead of the abrupt change, the conductivity has been varied 
smoothly, but with strong gradient. 

Andreev & Kolesnikov (1993) report an intense transverse convective exchange of 
fluid in an experiment using a number of conducting spots arranged in the main flow 
direction. The transverse time-dependent motion improved the heat transfer in this 
experiment by a factor 5-7 compared to the flow in an insulating duct. This increase 
cannot be explained by the small fluctuations observed in the early experiments for a 
single pair of conducting spots. Furthermore, the use of a number of conducting spots, 
arranged in a line along the main flow direction, should create a wake-type mean 
profile as in the case of the conducting line electrode, even at lower values of N .  If one 
conducting spot is unable to create a wake a number of them may do so. The 
mechanism for instability and the time-dependent flow should be comparable to the 
result discussed earlier in this paper. 

6. Conclusions 
The modelling of time-dependent MHD flows for fusion relevant parameters, M ,  

N $ 1, becomes important if an improvement of the heat transfer conditions compared 
with that of laminar inertialess flow is envisaged. Simulations of such flows by three- 
dimensional numerical codes seem impractical on present day computers since even 
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calculations for simple stationary problems take hours of computational time, require 
enormous storage and do not reach the parameters necessary for applications to fusion 
problems. The asymptotic methods successfully used to describe MHD flows for high 
A4 and N have been applied only to inertialess stationary problems up to now. The 
present paper is an approach to improving on the basic ideas of the asymptotic 
methods while keeping the weak inertia forces. Owing to the strong electromagnetic 
forces the inertial flow becomes two-dimensional in the core. Viscous effects are 
confined to very thin boundary layers at the walls. The basic three-dimensional 
equations are reduced to set of coupled two-dimensional equations in the plane 
perpendicular of the magnetic field for the leading variables, the vorticity, the stream 
function, and the electric potential by an analytical integration along magnetic field 
lines. The time-dependent two-dimensional equations are solved by efficient numerical 
methods. 

As an example, the flow in a flat channel with passive line electrodes along the main 
flow direction has been investigated. The electrodes act on the fluid like a brake and 
thus reduce the velocity locally. The fully developed solution is of the wake type, with 
a uniform velocity profile some distance from the electrodes and with a reduced 
velocity between the two electrodes. For Reynolds numbers higher than a critical value 
Re, this basic flow becomes unstable. Results for Re, obtained with the two- 
dimensional nonlinear model agree well with predictions by a linear stability analysis. 
For high values of the rescaled Hartmann number A4 >> ccl, i.e. if the electrodes are 
much better conducting than the Hartmann layer, Re, becomes almost proportional to 
M .  With increasing M the wave number k, and the phase velocity s ~ , ~  increase or 
decrease monotonically and reach values close to 1.5 or 0.5, respectively. 

If the flow enters the computational domain with a fully established velocity profile 
it exhibits the instability after a certain axial distance. The developing nonlinear 
solution is a result of the spatial amplification of very small deviations from the fully 
established profile at the entrance. The perturbations grow along the flow path and 
form finally a vortex street comparable to the Karman vortex street in the wake of a 
circular cylinder. With increasing Re the vortex motion is intensified and thus the 
transverse convective exchange improved. The primary vortex pattern which 
corresponds to the spatially most amplified mode according to the linear theory decays 
downstream. A secondary vortex street develops by a recombination, pairing, or 
merging of primary vortices. The tendency is towards larger scales and towards lower 
frequencies for larger downstream distances. A recombination to new structures can be 
observed several times along the axis depending on the physical parameters and on the 
length of the computational domain. After the primary street has decayed the vortex 
patterns usually contain contributions of three dominant frequencies. 

The result of the present study is that MHD provides an unstable basic velocity 
profile with two points of inflection. The mechanism for instability seems to be the 
same as for two-dimensional hydrodynamic flows since most effects found here have 
already been observed in the hydrodynamic wakes behind bluff bodies. The main 
difference is the stabilizing effect of the magnetic field. It introduces additional 
damping in the form of Joules dissipation mainly caused by the high electric currents 
in the thin Hartmann layers and in the electrodes. This sink reduces continuously the 
kinetic energy of perturbations and stabilizes the flow. 

It has been shown that a vortex-type flow pattern can be established by passive 
electrical means. The transverse convective exchange should be improved since 
significant components of velocity in this direction are created by the vortex motion. 
A further improvement may be achieved if a number of such highly conducting strips 
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are foreseen in parallel at different xu-locations on the walls of the coolant ducts. The 
vortices can be generated without any mechanical inserts inside the fluid. Besides these 
simple passive electrodes one can also think of active electrical amplification of vortices 
by supplying current to the electrodes. According to equation (3.6) such currents 
should be a source of vorticity. This idea has been already used by Sommeria (1986) in 
order to create an initial vortex pattern for his studies of the vortex decay, and by 
Andreev & Kolesnikov 1993 to drive the mean flow in their MHD experiments. It 
should also be possible to use this idea for the improvement of heat transfer and to 
apply the present theory for the theoretical predictions. 

The author would like to thank Professor U. Miiller and Professor J .  Sommeria for 
intense discussions and comments during the preparation of this work. 

This work has been performed in the framework of the Nuclear Fusion Project of 
the Forschungszentrum Karlsruhe and is supported by the European Union within the 
European Fusion Technology Program. 

R E F E R E N C E S  

ABAS, S. 1969 The effect of a parallel magnetic field on the stability of free boundary-layer type flows 
of low magnetic Reynolds number. J .  Fluid Mech. 38, 243-253. 

ALPHER, R. A,, HURWITL, H., JOHNSON, R. H. & WHITE, D. R. 1960 Some studies of free-surface 
mercury magnetohydrodynamics. Rev. iMod. Phys. 32, 758-769. 

ANDREEV, 0. V.  & KOLESNIKOV, Y.  B. 1993 Possibilities of heat transfer intensification to the M H D  
problems of liquid metal fusion blankets. Presentation at the Sei~enth Inrl Beer Shew Swi01ur on 
M H D  und Turbulence 14-18 Feb 1993 (Proc. to be published in Magr ie to i i~~ l ro~ i i~nr in~ i~s ) .  

ARAKAWA, A. 1966 Computational design for long-term numerical integration of the equations of 
fluid motion: Two-dimensional incompressible flow. Part I .  J .  Coinput. P/?j..c.. 1 ,  119-143. 

BETCHOV. R. & CRIMINALE, W. 0. 1966 Spatial instability of the inviscid jet and wake. Phjx. Fluids 

BUHLER, L. 1995 Magnetohydrodynamic flows in arbitrary geometries in strong, nonuniform 
magnetic fields. Fusion Technologs 27, 3-24. 

CANTW~LL,  B. & COLES, D. 1983 An experimental study of entrainment and transport in the 
turbulent near wake of a circular cylinder. J .  Fluid Mcch. 136. 321-347. 

CHANG, C. & LUNDGREN, S. 1961 Duct flow in magnetohydrodynamics. Z.  trngcw~ Mutl7. P l i y .  12. 
100-1 14. 

CIMBALA, J. M.. NAGIB, H. M. & ROSHKO, A. 1988 Large structure in the far wakes of two- 
dimensional bluff bodies. J .  Fluid Mech. 190, 265-298. 

GASTER, M. 1965 The role of spatially growing waves in the theory of hydrodynamic stability. Prog. 
Aero. Sci. 6. 25 1-270. 

HANNEMANN, K.  & OERTEL, H. 1989 Numerical simulation of the absolutely and convectively 
unstable wake. J .  Fluid Mrch. 199, 55-88. 

HARTMANN, J. 1937 Hg-Dynamics. I.  Theory of the laminar flow of an electrically conductive liquid 
in a homogeneous magnetic field. DetKx1. DanskP Vidc~nskuhmws Srlskah. MathrmatiskTj:vsiske 
Mecldelelst~r 15(6), 3-28. 

HUERRE, P. & MONKEWITZ, P. A. 1985 Absolute and convective instabilities in free shear layers. J .  
Fluid Mech. 159, 151-168. 

HUNT. .I. C. R. & MALCOLM, D. G. 1968 Some electrically driven flows in magnetohydrodynamics. 
Part 2. Theory and experiment. J .  Fluid Mcd?.  31, 775-801. 

HUNT, J. C.  R. & STEWARTSON, K. 1969 Some electrically driven flows in magnetohydrodynamics. 
Part 3. The asymptotic theory for flows between circular electrodes. J .  Fluid Mech. 38, 225-242. 

HUNT, J. C. R. & WILLIAMS, W. E. 1968 Some electrically driven flows in magnetohydrodynamics. 
Part 1. Theory. J .  Fluid Mech. 31, 705-722. 

9, 359-362. 



150 L. Buhler 
KARASUDANI, T. & FUNAKOSHI, M. 1994 Evolution of a vortex street in the far wake of a cylinder. 

Fluid Dyn. Res. 14, 331-352. 
KOLESNIKOV, Y. B. 1972 Two-dimensional turbulent flow in a channel with inhomogeneous electrical 

conductivity of the walls. Magnetohydrodynamics 8, 308-3 12. 
KOLESINKOV, Y. B. & TSINOBER, A. B. 1972 Magnetohydrodynamic flow in the region of a jump in 

the conductivity at the wall. Magnetohydrodynamics 8, 70-74. 
LAVRENT'EV, I. V., MOLOKOV, S. Yu., SIDORENKOV, S. I. & SHISHKO, A. R. 1990 Stokes flow in a 

rectangular magnetohydrodynamic channel with nonconducting walls within a nonuniform 
magnetic field at large Hartmann numbers. Magnetohydrodynamics 26, 328-338. 

LEHNERT, B. 1956 An instability of laminar flow of mercury caused by an external magnetic field. 
Proc. R. Soc. Lond. A 233, 299-310. 

LIELAUSIS, 0. A. I975 Liquid-metal magnetohydrodynamics. Atomic Energy Rev. 13, 527-581. 
LIENHARD, J. H. 1966 Synopsis of lift, drag and vortex frequency for rigid circular cylinders. Bulletin 

MALANG, S. et al. 1988 Self-cooled liquid metal blanket concept. Fusion Tech. 14, 1343. 
MOLOKOV, S. & BUHLER, L. 1994 Liquid metal flow in a U-bend in a strong magnetic field. J .  Fluid 

Mech. 267, 325-352. 
MONKEWITZ, P. A. 1988 The absolute and convective nature of instability in two-dimensional wakes 

at low Reynolds numbers. Phys. Fluids 31, 999-1006. 
MOON, T. J., HUA, T. Q., WALKER, J. S. & PICOLOGLOU, B. F. 1992 Liquid metal flow in a simple 

manifold with a strong transverse magnetic field. Appl. Sci. Res. 49, 49-65. 
MOREAU, R. 1990 Magnetohydrodynamics. Kluwer. 
OKUDE, M. & MATSUI, T. 1990 Vorticity distribution of vortex street in the wake of a circular 

SHERCLIFF, 1. A. 1965 A Textbook of Magnetohydrodynamics. Pergamon. 
SOMMERIA, J. 1986 Experimental study of the two-dimensional inverse energy cascade in a square 

box. J .  Fluid Mech. 170, 139-168. 
SOMMERIA, J. & MOREAU, R. 1982 Why, how, and when, MHD turbulence becomes two- 

dimensional. J .  Fluid Mech. 118, 507-5 18. 
TANEDA, S. 1959 Downstream development of wakes behind cylinders. J .  Phys. SOC. Japan 14, 

843-848. 
VERRON, J. & SOMMERIA, J .  1987 Numerical simulation of the two-dimensional turbulence 

experiment in magnetohydrodynamics. Phys. Fluids 30, 732-739. 
WALKER, J. S. 1981 Magnetohydrodynamic flows in rectangular ducts with thin conducting walls. 

Part I: Constant area and variable area ducts with strong uniform magnetic fields. J .  Me'c. 20, 

300, College of Engineering Research Division, Washington State University. 

cylinder. Trans. Japan Soc. Aeronaut. Space Sci. 37, 582-590. 

79-1 12. 


